GEOG 19.01: Climate Change and the Future of Agriculture

Instructor:	Prof. Jonathan Winter
Office Location:	Fairchild 015
Email:	jwinter@dartmouth.edu
Phone:	(603) 646-6456
X-Hours:	Expected use as detailed in syllabus and for makeup classes
Web:	https://canvas.dartmouth.edu

Course Description

The global agricultural sector faces the significant challenge of feeding a population projected to increase to 9 billion by mid-century under an evolving climate. This course will explore the physical geography of agricultural production systems throughout the world with an emphasis on the interactions between crops, climate, water, soils, and technology.

Lectures are designed to be interactive and will encourage participation through questions, discussion, and in-class exercises. Problem sets will include data analysis and the use of a simple crop model in MATLAB, which will be introduced and is available in Rahr Lab. This course counts as a Natural and Physical Science without Lab (SCI) Distributive Course Requirement.

Learning Objectives

By the end of this course, students will be able to:

- 1. Describe plant physiology, the global agricultural system, and key constraints to crop production in regions throughout the world.
- 2. Identify the mechanisms of, and distinguish between, climate variability and anthropogenic climate change.
- 3. Understand the basics of data manipulation and computer programming.
- 4. Outline the impacts of climate change on agriculture at local to global scales.
- 5. Interpret and apply scientific literature.
- 6. Analyze modeled and observed climate and crop data.
- 7. Assess the implications of current and expected future physical agricultural systems on global hunger.
- 8. Evaluate potential strategies for improving global crop production within the context of a changing climate.

Prerequisites

None

<u>Textbook</u>

Sheaffer, C. C., and K. M. Moncada, 2012: *Introduction to Agronomy: Food, Crops, and Environment*. Cengage Learning, 720 pp.

Course Resources on Reserve or Available Online

Diamond, J., 1987: The worst mistake in the history of the human race. *Discover*, **8**, 64–66. FAO, 2009: *How to Feed the World 2050*. http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf.

Fedoroff, N., and Coauthors, 2010: Radically rethinking agriculture for the 21st century. *Science*, **327**, 833–834.

Hillel, D., and C. Rosenzweig, eds., 2010: *Handbook of Climate Change and Agroecosystems: Impacts, Adaptation, and Mitigation.* World Scientific, 440 pp.

—, and —, eds., 2012: Handbook of Climate Change and Agroecosystems: Global and Regional Aspects and Implications. World Scientific, 330 pp.

IPCC, 2013: Summary for Policymakers, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. Stocker et al., Eds. 33 pp.

- Lobell, D. B., W. Schlenker, and J. Costa-Roberts, 2011: Climate trends and global crop production since 1980. *Science*, **333**, 616–620.
- Marston, B., 2013: The Science of Climate Change. http://vimeo.com/77243727.
- Mueller, N. D., J. S. Gerber, M. Johnston, D. K. Ray, N. Ramankutty, and J. A. Foley, 2012: Closing yield gaps through nutrient and water management. *Nature*, **490**, 254–257.
- Niggli, U., H. Schmid, and A. Fliessbach, 2008: Organic farming and climate change. http://orgprints.org/13414/3/niggli-etal-2008-itc-climate-change.pdf.
- Piao, S., and Coauthors, 2010: The impacts of climate change on water resources and agriculture in China. *Nature*, **467**, 43–51.
- Pollan, M., 2006: The Omnivore's Dilemma: A Natural History of Four Meals. Penguin, 464 pp.
- Sheaffer, C. C., and K. M. Moncada, 2012: Introduction to Agronomy: Food, Crops, and Environment. Cengage Learning, 720 pp.
- Tilman, D., C. Balzer, J. Hill, and B. L. Befort, 2011: Global food demand and the sustainable intensification of agriculture. *Proceedings of the National Academy of Sciences*, **108**, 20260–20264.
- USGCRP, 2014: *Climate Change Impacts in the United States*. J.M. Melillo, T.T. Richmond, and G. Yohe, Eds. 841 pp.

Grading

Problem sets will contain a mix of data analysis, back-of-envelope calculations, and short answer questions. Problem sets must be uploaded as one document in doc, docx, or pdf format via Canvas on or before the date and time due. Assignments received after that are considered late. Late assignments will be penalized 10% per 24-hour period. In-class exercises will not be collected or graded, but will cover important concepts likely to appear on both problem sets and exams. Exams will contain a mix of definitions, multiple choice, true/false, data/figure analysis, simple back-of-envelope calculations, short answer questions, and long answer questions. Exam #1 will include material from classes up to the Exam #1 Review. Exam #2 will be cumulative, but weighted toward material not tested in Exam #1. No makeup exams will be given without prior consent or documented emergency. Class participation will be assessed primarily on reading reactions with some consideration of student engagement. Reading reactions consist of a brief summary of the reading, as well as a mix of questions, key insights, and critiques submitted via Canvas online text entry in advance of class. Reactions will be graded on a 1-3 scale.

Weighting
15%
15%
15%
25%
25%
5%

Student Needs

Students requesting disability-related accommodations and services for this course are encouraged to contact me as early in the term as possible. In order for accommodations to be authorized, students are required to consult with Student Accessibility Services (SAS: student.accessibility.services@dartmouth.edu; SAS website; 603-646-9900) and to email me their SAS accommodation form. We will then work together with SAS if accommodations need to be modified based on the online learning environment. If students have questions about whether they are eligible for accommodations, they should contact the SAS office. All inquiries and discussions will remain confidential.

Academic Honesty

All students must comply with Dartmouth's Academic Honor Principle, described here: <u>https://students.dartmouth.edu/judicial-affairs/policy/academic-honor-principle</u>, with additional guidance here: <u>https://writing-speech.dartmouth.edu/learning/materials/sources-and-citations-dartmouth</u>. If you have questions or concerns, please contact me or the Undergraduate Deans Office.

Mental Health

The academic environment at Dartmouth is challenging, terms are intensive, and classes are not the only demanding part of your life. There are resources available on campus to support your wellness, including your Undergraduate Dean (<u>http://www.dartmouth.edu/~upperde/</u>), Counseling and Human Development (<u>http://www.dartmouth.edu/~chd/</u>), and the Student Wellness Center (<u>http://www.dartmouth.edu/~healthed/</u>).

Religious Observances

If you have a religious observance that conflicts with your participation in this course, please meet with me before the end of the second week of the term to discuss appropriate accommodations.

Textbook Costs and Financial Difficulty

If you encounter financial challenges related to this class, please let me know.

Date	Торіс	Assignments and Readings
Class 1	Climate Change and Agriculture	
	TEDX: The Other Inconvenient Truth	
Class 2	Discussion - Agriculture or Hunting	Diamond 1987; Sheaffer and
	and Gathering?	Moncada 2012, Chapter 1

Schedule

Class 3	The Global Agricultural Landscape	FAO 2009; Sheaffer and Moncada 2012, Chapter 3
Class 4	Introduction to MATLAB	
Class 5	Crops: Amaranth to Zucchini	Sheaffer and Moncada 2012, Chapter 4
Class 6	MATLAB Working Session	
Class 7	Plant Physiology	Sheaffer and Moncada 2012, Chapter 8
Class 8	Corn Nitrogen Experiment Setup	
Class 9	Crops and Environment	Sheaffer and Moncada 2012, Chapter 10; Problem Set #1 Due
Class 10	Industrial and Subsistence Farming: Closing the Yield Gap	Sheaffer and Moncada 2012, Chapter 10; Mueller et al. 2012
Class 11	Exam #1 Review	
Class 12	Climate Change Mechanisms and Processes	Marston 2013
Class 13	Exam #1	
Class 14	Climate Change Mechanisms and Processes	Marston 2013
Class 15	The IPCC and Paris!	IPCC 2013
Class 16	MATLAB Working Session	
Class 17	Agriculture under Climate Change: Carbon Dioxide and Nitrogen	(Hillel and Rosenzweig 2010), Chapter 5
Class 18	Discussion - Agriculture under Climate Change: Temperature and Precipitation	Lobell et al. 2011
Class 19	Discussion: Agriculture under Climate Change: Water	Piao et al. 2010
Class 20	Agriculture under Climate Change: Adaptation and Mitigation	Hillel and Rosenzweig 2012, Chapter 2; Problem Set #2 Due
Class 21	Agriculture under Climate Change: Adaptation and Mitigation	
Class 22	Climate Change and Agriculture: The United States	USGCRP 2014, Chapters 2 and 6
Class 23	MATLAB Working Session	
Class 24	Climate Change and Agriculture: Regional Perspectives	Hillel and Rosenzweig 2012, Chapter 6
Class 25	Discussion - Organic Farms, the Omnivore's Dilemma, and Joel Salatin	Pollan 2006, Chapter 9; Niggli et al. 2008

Class 26	Non-traditional Farming Techniques	Fedoroff et al. 2010
Class 27	Current Research in Agriculture and Climate Change	Hillel and Rosenzweig 2012, Chapter 14; Problem Set #3 Due
Class 28	Exam #2 Review	
Class 29	Discussion - Let's Fix Global Agriculture	Hillel and Rosenzweig 2012, Conclusion; Tilman et al. 2011
Class 30	Exam #2	